Solid Mechanics: Yielding in structural elements

Yielding of axisymmetric structural elements and a simple beam
are presented using some well know vyield criteria.

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018
2. J Botsis, Appendix C: Notes on Plasticity Theory



Mechanics of Solids: Axisymmetrically loaded members

Cylinder with internal and/or external pressure
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Mechanics of Solids: Theory of Elasticity, Axisymmetrically loaded members

APPROXIMATION FOR THIN-WALLED CONTAINER
If the wall thickness is les than 10% of the

inner radius, the cylinder is classified as a

Example: Hollow Cylinder with Internal and External Pressures )
thin-walled.
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The variation of stress with radius is disregarded
and the following approximation can be
adopted:
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Mechanics of Solids: Axisymmetrically loaded members

Cylinder with internal and/or external pressure

SPECIAL CASES:
1: Internal Pressure only

The equations we obtained earlier reduce to:
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Mechanics of Solids: Axisymmetrically loaded members

Cylinder with internal and/or external pressure

SPECIAL CASES: XA
2.0

2: External pressure only
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Mechanics of Solids: Yielding

Cylinder with internal and/or external pressure

Elastic Solution
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Rotating Disks of constant thickness
(mass density p)

We have here a cylindrical symmetry and all

stresses are thickness independent.

The equilibrium equation is what we saw earlier with
one more term, i.e., the centrifugal force:
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Introduce in it the stresses in terms of displacements,
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Rotating Disks of constant thickness

From the calculated displacement,
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Mechanics of Solids: Yielding in rotating disks

Rotating Annular Disks of constant thickness

Stresses due to rotation without pressure
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Mechanics of Solids: Yielding in rotating disks

Rotating Annular Disks of constant thickness

Stresses due to rotation without pressure,

v,/ r,=4
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Mechanics of Solids: Theory of Elasticity; Egs in cylindrical coordinates

Rotating Solid Disks of constant thickness

Boundary conditions: . —3+V(r2 rz)pa)z' i 3+v( 5 1+3vr2jpa)2
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Mechanics of Solids: Yielding in rotating disks

Rotating Solid Disks of constant thickness
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Pure Bending of straight prismatic beams
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Recall: deformation
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Mechanics of Solids: Elastic-perfectly plastic response of a beam

stress

Beam under pure bending

Material is elastic — perfectly plastic
We assume that yielding in tension
and compression are the same

Q

strain

Problem: determine the stress distribution in a beam under pure tension:
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We assume that plasticity has spread up
to a distance from the neutral axis.
Elastic region is



Mechanics of Solids: Elastic-perfectly plastic response of a beam

Beam under pure bending
Material is elastic — perfectly plastic
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Mechanics of Solids: Elastic-plastic response

. . . 1
v Mises criterion: J, = 503
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Mechanics of Solids: Elastic-plastic response

strain-hardening, or work hardening

Upon loading, a virgin material will yield when the yield criterion is satisfied.

For a perfectly plastic the yield stress and yield surface remain the same upon further loading.

In several material, the stress-strain curve rises and thus, the yield stress increases upon further loading.
This phenomenon is called strain-hardening, or work hardening.
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m) As a result the yield surface changes upon loading beyond the yield limit.
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Mechanics of Solids: Elastic-plastic response

Isotropic strain-hardening

For the v Mises yield criterion,
the circle on the & plane expands uniformly
and remains concentric.

The yield stress in tension and compression
Is assumed the same.

(a)




Mechanics of Solids: Elastic-plastic response

Bauschinger Effect,
kinematic hardening

Experimental results show that yield is tension
is not always the same in compression.

The increase of yield in tension results in a
decrease of yield in compression:

This is the so called called Bauschinger Effect ()
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As a consequence, the yield surface moves

in stress space.
In reality both phenomena

(isotropic and kinematic hardening
appear simultaneously)

(b)



Mechanics of Solids: Elastic-plastic response

Plastic Strains

During loading beyond the yield point, elastic and plastic strains are produced:

— e P
a’gij = dgl.j +a’gl.j

The elastic part can be expressed via Hook’s law

dg; = S,udoy, Two theories to model plastic strains.

or d o, = Cijkl de’, incrementql gr flow theories of plasticity: They relate
plastic strain increments to current stress level. The

increments of strains are computed throughout the

loading history and expressed in terms of the current

stress level. To determine total plastic strains, we

integrate the incremental stress-strain relations over the

history of loading.

total or deformation theories of plasticity: Here the total

strain components are related to the current stress.




Mechanics of Solids: Elastic-plastic response

Plastic Strains

de; =s,dA

Prandtl-Reuss equations / ﬂ
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To express them in terms of the stress components
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Mechanics of Solids: Elastic-plastic response

Plastic Strains
Prandtl-Reuss equations

With the flow rule known, we can have

e 1 2 1
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When the elastic strains are neglected (very small
compared to the plastic strains), the remaining
relations are called Lévy-Mises equations
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Mechanics of Solids: Elastic-plastic response

Plastic Strains
Prandtl-Reuss equations

p p P 14 p p
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For the details see Appendix C: Notes on Plasticity Theory



Mechanics of Solids: Elastic-plastic response

ELASTOPLASTIC STRESS ANALYSIS

0Q

When elastic and plastic strains of the same
order exist in a body, we talk about
elastoplastic problems. Three elements to
consider:

1. Elastic region

2. Plastic region

3. Elastic-plastic interface

1. Elastic region

Equilibrium: —> o, (x)+f, =0

1
Strain-displacement —— & (x,) = E(ui,j "’”j,z')

relations:

ituti 1+v 1%
Constitutive £ = 2S5

Equations : y E B Kk

Compatibility equations:
Boundary conditions:
on St — Gij(‘xk)ni(‘xk) =1,(x;)

on S, — u(x,)=u(x,)



Mechanics of Solids: Elastic-plastic response

ELASTOPLASTIC STRESS ANALYSIS

0Q

When elastic and plastic strains of the same
order exist in a body, we talk about
elastoplastic problems. Three elements to
consider:

1. Elastic region

2. Plastic region

3. Elastic-plastic interface

2. Plastic region
Equilibrium: — o, (x )+ f; =0

Stress-strain increment relations d
Jae,

P _ p_ "~
— dgl.j —Sl.jd/’t or dgl.j _2_0 S,

Yield condition: V. Mises

2 2 2 2 2 2 2
[(011_622) +(0y —033)" +(03;,—0) +6(O'12+023+G31)}:20Y

Boundary conditions on plastic domain (when it exists)
3. Elastic-plastic interface

Continuity of stresses and displacements
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