
Solid Mechanics: Yielding in structural elements

Yielding of axisymmetric structural elements and a simple beam 
are presented using some well know yield criteria. 

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018
2. J Botsis, Appendix C: Notes on Plasticity Theory



Mechanics of Solids: Axisymmetrically loaded members

Boundary 
Conditions

Cylinder with internal and/or external pressure



APPROXIMATION FOR THIN-WALLED CONTAINER

Example: Hollow Cylinder with Internal and External Pressures

Mechanics of Solids: Theory of Elasticity, Axisymmetrically loaded members

If the wall thickness is les than 10% of the 
inner radius, the cylinder is classified as a 
thin-walled.

The variation of stress with radius is disregarded 
and the following approximation can be 
adopted:



Mechanics of Solids: Axisymmetrically loaded members
Cylinder with internal and/or external pressure

SPECIAL CASES:

1: Internal Pressure only

The equations we obtained earlier reduce to:
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Mechanics of Solids: Axisymmetrically loaded members
Cylinder with internal and/or external pressure

SPECIAL CASES:

2: External pressure only

The equations we obtained earlier reduce to:
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Mechanics of Solids: Yielding
Cylinder with internal and/or external pressure
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Elastic Solution

Maximum shear stress at any point

The largest value occurs at the inner surface ir r=
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Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
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Rotating Disks of constant thickness

We have here a cylindrical symmetry and all 
stresses are thickness independent.
The equilibrium equation is what we saw earlier with 
one more term, i.e., the centrifugal force:

Introduce in it the stresses in terms of displacements,
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Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
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Rotating Disks of constant thickness

from stress-displacement
relations,
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From the calculated displacement,



Mechanics of Solids: Yielding in rotating disks
Rotating Annular Disks of constant thickness

Stresses due to rotation without pressure
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Mechanics of Solids: Yielding in rotating disks

Stresses due to rotation without pressure, 2 2
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Rotating Annular Disks of constant thickness



Mechanics of Solids: Theory of Elasticity; Eqs in cylindrical coordinates
Rotating Solid Disks of constant thickness

Boundary conditions: 
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Mechanics of Solids: Yielding in rotating disks
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Pure Bending of straight prismatic beams

Figure 6.3 13
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Mechanics of Solids: Elastic-perfectly plastic response of a beam

Beam under pure bending
Material is elastic – perfectly plastic
We assume that yielding in tension
and compression are the same

Problem: determine the stress distribution in a beam under pure tension:

Yσ

st
re

ss

strain

1x

2x

MM
b

h

h

2x

3x

Yσ

Yσ

c
c

We assume that plasticity has spread up 
to a distance from the neutral axis.
Elastic region is  



Mechanics of Solids: Elastic-perfectly plastic response of a beam

Beam under pure bending
Material is elastic – perfectly plastic
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Mechanics of Solids: Elastic-plastic response

v Mises criterion:

. 
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Mechanics of Solids: Elastic-plastic response

strain-hardening, or work hardening

. 

1. Upon loading, a virgin material will yield when the yield criterion is satisfied.  
2. For a perfectly plastic the yield stress and yield surface remain the same upon further loading. 
3. In several material, the stress-strain curve rises and thus, the yield stress increases upon further loading.  
4. This phenomenon is called strain-hardening, or work hardening. 

As a result the yield surface changes upon loading beyond the yield limit. 

yield point

loading - unloading

plastic 
strain

Yσ

estrain

'
Yσ

elastic strain
O

( )ijf Kσ =

( ) ( )
, 0   ij

ij ij
ij

f
f K d

σ
σ σ

σ

∂
= >

∂

( ) ( )
, 0   ij

ij ij
ij

f
f K d

σ
σ σ

σ

∂
= =

∂

( ) ( )
, 0   ij

ij ij
ij

f
f K d

σ
σ σ

σ

∂
= <

∂

Yield function: 

Loading: 

Neutral Loading: 

Unloading: 



Mechanics of Solids: Elastic-plastic response

Isotropic strain-hardening 

. 
. 

The yield stress in tension and compression
is assumed the same.
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Mechanics of Solids: Elastic-plastic response

Bauschinger Effect, 
kinematic hardening

. 
. 

Experimental results show that yield is tension
is not always the same in compression.

The increase of yield in tension results in a
decrease of yield in compression:

This is the so called called Bauschinger Effect
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As a consequence, the yield surface moves 
in stress space.

In reality both phenomena 
(isotropic and kinematic hardening 
appear simultaneously) 



Mechanics of Solids: Elastic-plastic response

Plastic Strains 

. 
. 

During loading beyond the yield point, elastic and plastic strains are produced:

The elastic part can be expressed via Hook’s law
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Two theories to model plastic strains.  
incremental or flow theories of plasticity: They relate 
plastic strain increments to current stress level. The 
increments of strains are computed throughout the 
loading history and expressed in terms of the current 
stress level. To determine total plastic strains, we 
integrate the incremental stress-strain relations over the 
history of loading.
total or deformation theories of plasticity: Here the total 
strain components are related to the current stress. 



Mechanics of Solids: Elastic-plastic response

Plastic Strains

Prandtl-Reuss equations

. 
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Mechanics of Solids: Elastic-plastic response. 
. 

With the flow rule known, we can have
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Plastic Strains
Prandtl-Reuss equations

When the elastic strains are neglected (very small
compared to the plastic strains), the remaining
relations are called Lévy-Mises equations



Mechanics of Solids: Elastic-plastic response. 
. 

To identify we start with: 

We replace:

Define: 

Plastic Strains
Prandtl-Reuss equations
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For the details see Appendix C: Notes on Plasticity Theory



Mechanics of Solids: Elastic-plastic response

ELASTOPLASTIC STRESS ANALYSIS 1. Elastic region

Equilibrium:

Strain-displacement
relations:

Constitutive 
Equations :

Compatibility equations:
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When elastic and plastic strains of the same 
order exist in a body, we talk about 
elastoplastic problems. Three elements to 
consider:
1. Elastic region
2. Plastic region
3. Elastic-plastic interface



Mechanics of Solids: Elastic-plastic response

ELASTOPLASTIC STRESS ANALYSIS 2. Plastic region

Equilibrium:

Stress-strain increment relations                                        
or 

Yield condition: V. Mises

Boundary conditions on plastic domain (when it exists)

3. Elastic-plastic interface

Continuity of stresses and displacements 
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When elastic and plastic strains of the same 
order exist in a body, we talk about 
elastoplastic problems. Three elements to 
consider:
1. Elastic region
2. Plastic region
3. Elastic-plastic interface
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